MDA5 disease variant M854K prevents ATP-dependent structural discrimination of viral and cellular RNA

Autor: Qin Yu, Yorgo Modis, Alba Herrero del Valle, Rahul Singh
Přispěvatelé: Yu, Qin [0000-0001-9265-632X], Herrero Del Valle, Alba [0000-0001-8153-6146], Singh, Rahul [0000-0001-8397-0202], Modis, Yorgo [0000-0002-6084-0429], Apollo - University of Cambridge Repository, Herrero del Valle, Alba [0000-0001-8153-6146]
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Models
Molecular

82/29
Interferon-Induced Helicase
IFIH1

Protein Conformation
ATPase
viruses
General Physics and Astronomy
medicine.disease_cause
631/45/173
631/45/535/1258/1259
Adenosine Triphosphate
0302 clinical medicine
ATP hydrolysis
Interferon
Adenosine Triphosphatases
0303 health sciences
Mutation
Multidisciplinary
biology
Chemistry
631/45/500
article
food and beverages
MDA5
Chronic inflammation
3. Good health
Cell biology
RNA silencing
Enzyme mechanisms
RNA
Viral

Protein Binding
medicine.drug
Science
Allosteric regulation
Mutation
Missense

General Biochemistry
Genetics and Molecular Biology

96/95
03 medical and health sciences
medicine
Humans
82/83
RNA
Double-Stranded

030304 developmental biology
Inflammation
631/250/262/2106/2518
Cryoelectron Microscopy
101/28
fungi
RNA
General Chemistry
Immunity
Innate

HEK293 Cells
631/250/256/2515
RIG-I-like receptors
biology.protein
Nucleic Acid Conformation
030217 neurology & neurosurgery
Zdroj: Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
Nature Communications, 12 (1)
Nature Communications
ISSN: 2041-1723
Popis: Our innate immune responses to viral RNA are vital defenses. Long cytosolic double-stranded RNA (dsRNA) is recognized by MDA5. The ATPase activity of MDA5 contributes to its dsRNA binding selectivity. Mutations that reduce RNA selectivity can cause autoinflammatory disease. Here, we show how the disease-associated MDA5 variant M854K perturbs MDA5-dsRNA recognition. M854K MDA5 constitutively activates interferon signaling in the absence of exogenous RNA. M854K MDA5 lacks ATPase activity and binds more stably to synthetic Alu:Alu dsRNA. CryoEM structures of MDA5-dsRNA filaments at different stages of ATP hydrolysis show that the K854 sidechain forms polar bonds that constrain the conformation of MDA5 subdomains, disrupting key steps in the ATPase cycle- RNA footprint expansion and helical twist modulation. The M854K mutation inhibits ATP-dependent RNA proofreading via an allosteric mechanism, allowing MDA5 to form signaling complexes on endogenous RNAs. This work provides insights on how MDA5 recognizes dsRNA in health and disease.
MDA5 is the primary immune sensor for SARS-CoV-2 and many other viruses. Mutations in MDA5 can cause disease. Here the authors employ CryoEM and biochemical methods to show how steric constraints cause MDA5 to misrecognize endogenous RNA as viral RNA.
Databáze: OpenAIRE