Predicting short-term survival after total resection in glioblastomas by machine learning-based radiomic analysis of preoperative MRI

Autor: Tomás Zamora, Manuel Garcia-Galindo, Santiago Cepeda, Rosario Sarabia, Daniel García-Pérez, Angel Perez-Nuñez, Sergio García-García, María Velasco-Casares, Luis Jiménez-Roldán, Ignacio Arrese, Pedro Gonzalez
Rok vydání: 2021
Předmět:
DOI: 10.21203/rs.3.rs-640526/v1
Popis: Background Radiomics, in combination with artificial intelligence, has emerged as a powerful tool for the development of predictive models in neuro-oncology. Our study aims to find an answer to a clinically relevant question: is there a radiomic profile that can identify glioblastoma (GBM) patients with short-term survival after complete tumor resection?Methods A retrospective study of GBM patients who underwent surgery was conducted in two institutions between January 2019 and January 2020, along with cases from public databases. Cases with gross total or near-total tumor resection were included. Preoperative structural multiparametric magnetic resonance imaging (mpMRI) sequences were preprocessed, and a total of 15720 radiomic features were extracted. After feature reduction, machine learning-based classifiers were used to predict early mortality (< 6 months). Additionally, a survival analysis was performed using the random survival forest (RSF) algorithm.Results A total of 203 patients were enrolled in this study. In the classification task, the naive Bayes classifier obtained the best results in the testing cohort, with an area under the curve (AUC) of 0.769 and classification accuracy of 80%. The RSF model allowed the stratification of patients into low- and high-risk groups. In the validation set, this model obtained values of C-Index = 0.61, IBS = 0.123 and integrated AUC at six months of 0.761.Conclusion In this study, we developed a reliable predictive model of short-term survival in GBM by applying open-source and user-friendly computational means. These new tools will assist clinicians in adapting our therapeutic approach considering individual patient characteristics.
Databáze: OpenAIRE