Popis: |
Massive floating macroalgal blooms in the ocean have had an array of ecological consequences; thus, tracking their drifting pattern and predicting their biomass are important for their effective management. However, a high-resolution ecological dynamics model is lacking. In this study, a physical–ecological model, Floating Macroalgal Growth and Drift Model (FMGDM v1.0), was developed to determine the dynamic growth and drift pattern of floating macroalgal, based on the tracking, replication and extinction of Lagrangian particles. The position, velocity, quantity and represented biomass of particles are updated synchronously between the tracking module and the ecological module. The former is driven by ocean flows and sea surface wind, while the latter is controlled by the temperature, salinity, and irradiation. Based on the hydrodynamic models of the Finite-Volume Community Ocean Model and parameterized using a culture experiment of Ulva prolifera, which caused the largest bloom worldwide of the green tide in the Yellow Sea, China, this model was applied to simulate the green tides around the Yellow Sea in 2014 and 2015. The simulation result, distribution and biomass of green tides, was validated using remote sensing observation data and reasonably modeled the entire process of green tide bloom and its extinction from early spring to late summer. Given the prescribed spatial initialization from remote sensing observation, the model could provide accurate short-term (7–8 d) predictions of the spatial and temporal developments of the green tide. With the support of the hydrodynamic model and biological data of macroalgae, this model can forecast floating macroalgae blooms in other regions. |