On Siegel invariants of certain CM-fields
Autor: | Dong Hwa Shin, Ja Kyung Koo, Gilles Robert, Dong Sung Yoon |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Algebra and Number Theory Mathematics - Number Theory Generalization Mathematics::Number Theory 010102 general mathematics 0102 computer and information sciences Ray class field Special values 01 natural sciences symbols.namesake Number theory Quadratic equation 11R37 (Primary) 11F46 11G15 14K25 (Secondary) 010201 computation theory & mathematics Fourier analysis FOS: Mathematics symbols Number Theory (math.NT) 0101 mathematics Invariant (mathematics) Mathematics |
Zdroj: | The Ramanujan Journal. 54:261-284 |
ISSN: | 1572-9303 1382-4090 |
DOI: | 10.1007/s11139-019-00223-3 |
Popis: | We first construct Siegel invariants of some CM-fields in terms of special values of theta constants, which would be a generalization of Siegel-Ramachandra invariants of imaginary quadratic fields. And, we further describe Galois actions on these invariants and provide some numerical examples to show that this invariant really generates the ray class field of a CM-field. Comment: 21 pages |
Databáze: | OpenAIRE |
Externí odkaz: |