A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers
Autor: | Marianne Rooman, Damien Cavez, Marie C. Berny, François Chaumont, Dimitri Gilis, Arnaud Besserer, Gerd Patrick Bienert |
---|---|
Rok vydání: | 2012 |
Předmět: |
Disulfides -- metabolism
Protein Folding Protein Conformation Plasma membrane intrinsic protein Cell Membrane -- metabolism Plant Proteins -- genetics -- metabolism Biochemistry Oligomer chemistry.chemical_compound Xenopus laevis Protein structure Gene Expression Regulation Plant Disulfides Plant Proteins chemistry.chemical_classification Trafficking Aquaporin Oocytes -- cytology -- metabolism Dimer formation Amino acid lipids (amino acids peptides and proteins) Protein folding Female Water -- metabolism Mercury sensitivity Blotting Western Molecular Sequence Data Aquaporins Zea mays Animals Disulfide bridge Amino Acid Sequence Cysteine RNA Messenger Molecular Biology Cysteine metabolism Water transport Sequence Homology Amino Acid Aquaporins -- genetics -- metabolism Cell Membrane Water Biological Transport Cell Biology Sciences biomédicales chemistry Protein Biosynthesis Zea mays -- genetics -- growth & development -- metabolism Oocytes Protein Multimerization Cysteine -- chemistry -- metabolism RNA Messenger -- genetics |
Zdroj: | Biochemical journal, 445 (1 |
ISSN: | 1470-8728 |
Popis: | AQPs (aquaporins) are conserved in all kingdoms of life and facilitate the rapid diffusion of water and/or other small solutes across cell membranes. Among the different plant AQPs, PIPs (plasma membrane intrinsic proteins), which fall into two phylogenetic groups, PIP1 and PIP2, play key roles in plant water transport processes. PIPs form tetramers in which each monomer acts as a functional channel. The intermolecular interactions that stabilize PIP oligomer complexes and are responsible for the resistance of PIP dimers to denaturating conditions are not well characterized. In the present study, we identified a highly conserved cysteine residue in loop A of PIP1 and PIP2 proteins and demonstrated by mutagenesis that it is involved in the formation of a disulfide bond between two monomers. Although this cysteine seems not to be involved in regulation of trafficking to the plasma membrane, activity, substrate selectivity or oxidative gating of ZmPIP1s (Zm is Zea mays), ZmPIP2s and hetero-oligomers, it increases oligomer stability under denaturating conditions. In addition, when PIP1 and PIP2 are co-expressed, the loop A cysteine of ZmPIP1;2, but not that of ZmPIP2;5, is involved in the mercury sensitivity of the channels. Journal Article Research Support, Non-U.S. Gov't SCOPUS: ar.j info:eu-repo/semantics/published |
Databáze: | OpenAIRE |
Externí odkaz: |