ON THE MERTENS–CESÀRO THEOREM FOR NUMBER FIELDS

Autor: Andrea Ferraguti, Giacomo Micheli
Přispěvatelé: Ferraguti, Andrea, Micheli, Giacomo
Rok vydání: 2015
Předmět:
Zdroj: Bulletin of the Australian Mathematical Society. 93:199-210
ISSN: 1755-1633
0004-9727
DOI: 10.1017/s0004972715001288
Popis: Let $K$ be a number field with ring of integers ${\mathcal{O}}$. After introducing a suitable notion of density for subsets of ${\mathcal{O}}$, generalising the natural density for subsets of $\mathbb{Z}$, we show that the density of the set of coprime $m$-tuples of algebraic integers is $1/{\it\zeta}_{K}(m)$, where ${\it\zeta}_{K}$ is the Dedekind zeta function of $K$. This generalises a result found independently by Mertens [‘Ueber einige asymptotische Gesetze der Zahlentheorie’, J. reine angew. Math. 77 (1874), 289–338] and Cesàro [‘Question 75 (solution)’, Mathesis 3 (1883), 224–225] concerning the density of coprime pairs of integers in $\mathbb{Z}$.
Databáze: OpenAIRE