Controlling Protein Nanocage Assembly with Hydrostatic Pressure

Autor: Adam W. Perriman, Ben M. Carter, Andrew J. Smith, Helmut Cölfen, Valeska P. Ting, Kristian Le Vay, T.-Y. Dora Tang, Robert P. Rambo, Daniel W. Watkins, J. L. Ross Anderson
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Le Vay, K, Carter, B M, Watkins, D W, Tang, T-Y D, Ting, V P, Cölfen, H, Rambo, R P, Smith, A J, Anderson, J L R & Perriman, A W 2020, ' Controlling protein nanocage assembly with hydrostatic pressure ', Journal of the American Chemical Society . https://doi.org/10.1021/jacs.0c07285
DOI: 10.1021/jacs.0c07285
Popis: Controlling the assembly and disassembly of nanoscale protein cages for the capture and internalisation of protein or non-proteinaceous components is fundamentally important to a diverse range of bionanotechnological applications. Here, we study the reversible, pressure-induced dissociation of a natural protein nanocage,E. colibacterioferritin (Bfr), using synchrotron radiation small angle X-ray scattering (SAXS) and circular dichroism (CD). We demonstrate that hydrostatic pressures of 450 MPa are sufficient to completely dissociate the Bfr icositetramer into protein dimers, and the reversibility and kinetics of the reassembly process can be controlled by selecting appropriate buffer conditions. We also demonstrate that the heme B prosthetic group present at the subunit dimer interface influences the stability and pressure lability of the cage, despite its location being discrete from the inter-dimer interface that is key to cage assembly. This indicates a major cage-stabilising role for heme within this family of ferritins.
Databáze: OpenAIRE