Analysis of the integration of drift detection methods in learning algorithms for electrical consumption forecasting in smart buildings
Autor: | Víctor Alonso Gómez, Adalberto Ospino C., Felix Santos Garcia, Luis Hernández Callejo, Hugo J. Bello, Oscar Duque-Perez, Álvaro Jaramillo Duque, Martín Solís, Luis Gerardo Gonzalez Morales, Deyslen Mariano, Angel Luis Zorita Lamadrid |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
drift detection
electrical consumption forecasting energy forecasting machine learning smart buildings Electrical consumption forecasting Renewable Energy Sustainability and the Environment Energy forecasting Smart buildings Geography Planning and Development Machine learning Management Monitoring Policy and Law Drift detection |
Zdroj: | REDICUC-Repositorio CUC Corporación Universidad de la Costa instacron:Corporación Universidad de la Costa Sustainability; Volume 14; Issue 10; Pages: 5857 |
Popis: | Buildings are currently among the largest consumers of electrical energy with considerable increases in CO2 emissions in recent years. Although there have been notable advances in energy efficiency, buildings still have great untapped savings potential. Within demand-side management, some tools have helped improve electricity consumption, such as energy forecast models. However, because most forecasting models are not focused on updating based on the changing nature of buildings, they do not help exploit the savings potential of buildings. Considering the aforementioned, the objective of this article is to analyze the integration of methods that can help forecasting models to better adapt to the changes that occur in the behavior of buildings, ensuring that these can be used as tools to enhance savings in buildings. For this study, active and passive change detection methods were considered to be integrators in the decision tree and deep learning models. The results show that constant retraining for the decision tree models, integrating change detection methods, helped them to better adapt to changes in the whole building’s electrical consumption. However, for deep learning models, this was not the case, as constant retraining with small volumes of data only worsened their performance. These results may lead to the option of using tree decision models in buildings where electricity consumption is constantly changing. |
Databáze: | OpenAIRE |
Externí odkaz: |