Semigroups in Stable Structures

Autor: Yatir Halevi
Rok vydání: 2018
Předmět:
Zdroj: Notre Dame J. Formal Logic 59, no. 3 (2018), 417-436
ISSN: 0029-4527
DOI: 10.1215/00294527-2018-0003
Popis: Assume that $G$ is a definable group in a stable structure $M$ . Newelski showed that the semigroup $S_{G}(M)$ of complete types concentrated on $G$ is an inverse limit of the $\infty$ -definable (in $M^{\mathrm{eq}}$ ) semigroups $S_{G,\Delta}(M)$ . He also showed that it is strongly $\pi$ -regular: for every $p\inS_{G,\Delta}(M)$ , there exists $n\in\mathbb{N}$ such that $p^{n}$ is in a subgroup of $S_{G,\Delta}(M)$ . We show that $S_{G,\Delta}(M)$ is in fact an intersection of definable semigroups, so $S_{G}(M)$ is an inverse limit of definable semigroups, and that the latter property is enjoyed by all $\infty$ -definable semigroups in stable structures.
Databáze: OpenAIRE