Classifying equivalence relations in the Ershov hierarchy

Autor: Nikolay Bazhenov, Andrea Sorbi, Luca San Mauro, Manat Mustafa, Mars M. Yamaleev
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Algebraic properties
Delta02 equivalence relations
Logic
02 engineering and technology
\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta ^0_2$$\end{document}Δ20 equivalence relations
Notation
01 natural sciences
Ershov hierarchy
Article
Lift (mathematics)
Computability theory
Degree structure
Computability theory
Ershov hierarchy
Delta02 equivalence relations
computably enumerable equivalence relations

FOS: Mathematics
0202 electrical engineering
electronic engineering
information engineering

Equivalence relation
0101 mathematics
Mathematics
Discrete mathematics
computably enumerable equivalence relations
010102 general mathematics
Sigma
Mathematics - Logic
03D30 (Primary)
03D55 (Secondary)

16. Peace & justice
Infimum and supremum
Philosophy
03D55
020201 artificial intelligence & image processing
Logic (math.LO)
Zdroj: Archive for Mathematical Logic
Popis: Computably enumerable equivalence relations (ceers) received a lot of attention in the literature. The standard tool to classify ceers is provided by the computable reducibility $\leq_c$. This gives rise to a rich degree-structure. In this paper, we lift the study of $c$-degrees to the $\Delta^0_2$ case. In doing so, we rely on the Ershov hierarchy. For any notation $a$ for a non-zero computable ordinal, we prove several algebraic properties of the degree-structure induced by $\leq_c$ on the $\Sigma^{-1}_{a}\smallsetminus \Pi^{-1}_a$ equivalence relations. A special focus of our work is on the (non)existence of infima and suprema of $c$-degrees.
Comment: 35 pages
Databáze: OpenAIRE