Non-local approximation of the Griffith functional
Autor: | Giovanni Scilla, Francesco Solombrino |
---|---|
Přispěvatelé: | Scilla, G., Solombrino, F. |
Rok vydání: | 2021 |
Předmět: |
Sequence
Γ -convergence Applied Mathematics 010102 general mathematics Mathematical analysis Non-local approximations 49Q20 49J45 74R10 Non local 01 natural sciences 010101 applied mathematics Mathematics - Analysis of PDEs Γ-convergence Griffith functional Dimension (vector space) Brittle fracture Convergence (routing) FOS: Mathematics Non-local approximation 0101 mathematics Analysis Analysis of PDEs (math.AP) Mathematics |
Zdroj: | Nonlinear Differential Equations and Applications NoDEA. 28 |
ISSN: | 1420-9004 1021-9722 |
DOI: | 10.1007/s00030-021-00682-y |
Popis: | An approximation, in the sense of $$\Gamma $$ Γ -convergence and in any dimension $$d\ge 1$$ d ≥ 1 , of Griffith-type functionals, with p-growth ($$p>1$$ p > 1 ) in the symmetrized gradient, is provided by means of a sequence of non-local integral functionals depending on the average of the symmetrized gradients on small balls. |
Databáze: | OpenAIRE |
Externí odkaz: |