Hecke algebraic properties of dynamicalR-matrices. Application to related quantum matrix algebras

Autor: Ivan Todorov, Pavel Pyatov, L. K. Hadjiivanov, Oleg Ogievetsky, A. P. Isaev
Přispěvatelé: Centre de Physique Théorique - UMR 6207 (CPT), Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique - UMR 7332 (CPT), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Ogievetsky, Oleg, Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Rok vydání: 1999
Předmět:
High Energy Physics - Theory
Pure mathematics
Hecke algebra
FOS: Physical sciences
Type (model theory)
01 natural sciences
High Energy Physics::Theory
Matrix (mathematics)
Mathematics::Quantum Algebra
Mathematics - Quantum Algebra
0103 physical sciences
FOS: Mathematics
Quantum Algebra (math.QA)
0101 mathematics
Quantum
Mathematical Physics
Mathematics
[MATH.MATH-QA] Mathematics [math]/Quantum Algebra [math.QA]
[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
010308 nuclear & particles physics
Operator (physics)
010102 general mathematics
Matrix mechanics
Zero (complex analysis)
Statistical and Nonlinear Physics
High Energy Physics - Theory (hep-th)
[MATH.MATH-QA]Mathematics [math]/Quantum Algebra [math.QA]
[PHYS.HTHE] Physics [physics]/High Energy Physics - Theory [hep-th]
Realization (systems)
Zdroj: Scopus-Elsevier
ISSN: 1089-7658
0022-2488
DOI: 10.1063/1.532779
Popis: The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation defines an R-matrix R(p), where $p$ stands for a set of mutually commuting variables. A family of SL(n)-type solutions of this equation provides a new realization of the Hecke algebra. We define quantum antisymmetrizers, introduce the notion of quantum determinant and compute the inverse quantum matrix for matrix algebras of the type R(p) a_1 a_2 = a_1 a_2 R. It is pointed out that such a quantum matrix algebra arises in the operator realization of the chiral zero modes of the WZNW model.
28 pages, LaTeX
Databáze: OpenAIRE