Pore morphology evolution and atom distribution of doped Fe2O3 foams developed by freeze-casting after redox cycling
Autor: | R. Sepúlveda, A. Paúl, P. J. Lloreda-Jurado, Ernesto Chicardi, Jesús Hernández-Saz |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, European Commission (EC). Fondo Europeo de Desarrollo Regional (FEDER) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Materials science
Hydrogen FOS: Physical sciences Sintering chemistry.chemical_element 02 engineering and technology 01 natural sciences Redox Biomaterials 0103 physical sciences Al2O3 Chemical looping system Porosity 010302 applied physics Condensed Matter - Materials Science Mining engineering. Metallurgy Dopant TN1-997 Metals and Alloys Solid oxygen Materials Science (cond-mat.mtrl-sci) Camphene 021001 nanoscience & nanotechnology Surfaces Coatings and Films Chemical engineering chemistry Pore evolution Ceramics and Composites Water splitting Fe2O3 Freeze-casting 0210 nano-technology Chemical looping combustion |
Zdroj: | idUS. Depósito de Investigación de la Universidad de Sevilla instname Journal of Materials Research and Technology, Vol 13, Iss, Pp 1887-1898 (2021) |
Popis: | Chemical looping water splitting systems operate at relatively high temperatures (450-800 degree C) to produce, purify, or store hydrogen by the cyclic reduction and oxidation (redox) of a solid oxygen carrier. Therefore, to improve long-term operation, it is necessary to develop highly stable oxygen carriers with large specific surface areas. In this work, highly interconnected doped Fe2O3 foams are fabricated through the freeze-casting technique, and the aid of a submicrometric camphene-based suspension to prevent Fe sintering and pore clogging during redox operation. The influence of the dopant elements (Al and Ce) over the pore morphology evolution, and redox performances are examined. The use of an Fe2O3 porous structure with initial pore size above 100 microns shows a significant reduction of the sample densification, and the addition of Al2O3 by the co-precipitation process proves to be beneficial in preventing the generation of a core-shell structure following redox processing. 25 pages, 8 figures |
Databáze: | OpenAIRE |
Externí odkaz: |