Identification of a Peripherin Dimer: Changes During Axonal Development and Regeneration of the Rat Sciatic Nerve

Autor: Kenneth L. Moya, S. Chadan, G. Filliatreau, M.-M. Portier
Rok vydání: 2008
Předmět:
Zdroj: Journal of Neurochemistry. 62:1894-1905
ISSN: 1471-4159
0022-3042
Popis: Western blotting of rat dorsal root ganglion (DRG) and sciatic nerve under nonreducing conditions revealed that a peripherin-specific antibody recognized a protein species of 116/130 kDa, pi 5.6, in addition to peripherin (56 kDa, pl 5.6). We showed that this 116/130 kDa protein is a disulfide dimer of peripherin, because it gave rise to a single protein band comigrating with peripherin under reducing conditions and yielded the same proteolytic pattern as peripherin upon N-chlorosuccinimide digestion. In addition, the immunological characteristics of the resulting peptides were identical to those of peripherin. We investigated the changes in peripherin monomer and dimer protein levels during axonal development and regeneration. During postnatal development, quantitative analysis of western blots of DRG proteins showed a significant increase in peripherin monomer (+52%) and dimer (+33%) levels from the day of birth [postnatal day 0 (PO)] to P7. The monomer levels remained high until P14 and then decreased so that at P21 and later ages, the monomer levels were similar to those observed at birth. In contrast, the dimer levels decreased continuously after P7, and in the adult, its level represented only 30% of the level at birth. Changes in [35S]methionine incorporation into adult DRG proteins were studied during regeneration of axotomized sciatic axons. Quantitative analysis of proteins showed a strong increase in labeling of both peripherin monomer (+56%) and dimer (+88%) 7 days after the crush. These levels, which remained high until 28 days after the axotomy, had returned to normal 70 days post axotomy. Our results show that peripherin monomer and dimer greatly increase during DRG fiber development and regeneration, suggesting that the two forms are involved in the growth of axons.
Databáze: OpenAIRE