Quasi self-dual codes over non-unital rings of order six

Autor: Patrick Solé, Alexis Bonnecaze, Alaa Altassan, Amani Alkathiry, Hatoon Shoaib, Adel Alahmadi, Widyan Basaffar
Přispěvatelé: Department of Mathematics [Jeddah], King Abdulaziz University, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Sol'e, Patrick
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Proyecciones (Antofagasta) v.39 n.4 2020
SciELO Chile
CONICYT Chile
instacron:CONICYT
Proyecciones : Revista de Matemática
Proyecciones : Revista de Matemática, Universidad Católica del Norte, 2020
Proyecciones : Revista de Matemática, 2020
ISSN: 0716-0917
0717-6279
Popis: International audience; There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a Z 6-code, which, when self-dual, produces an unimodular lattice by Construction A.
Databáze: OpenAIRE