Quasi self-dual codes over non-unital rings of order six
Autor: | Patrick Solé, Alexis Bonnecaze, Alaa Altassan, Amani Alkathiry, Hatoon Shoaib, Adel Alahmadi, Widyan Basaffar |
---|---|
Přispěvatelé: | Department of Mathematics [Jeddah], King Abdulaziz University, Institut de Mathématiques de Marseille (I2M), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Sol'e, Patrick |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Code (set theory)
non-unital rings Unimodular lattice General Mathematics [MATH] Mathematics [math] 010103 numerical & computational mathematics 01 natural sciences Identity (music) Combinatorics Permutation Unimodular lattices [MATH]Mathematics [math] 0101 mathematics semi-local rings Mathematics Unital Non-unital rings Order (ring theory) Secondary 16 A10 16. Peace & justice Dual (category theory) 010101 applied mathematics Semi-local rings Self-orthogonal codes self-orthogonal codes Multiplication uni- modular lattices MSC(2010): Primary 94 B05 |
Zdroj: | Proyecciones (Antofagasta) v.39 n.4 2020 SciELO Chile CONICYT Chile instacron:CONICYT Proyecciones : Revista de Matemática Proyecciones : Revista de Matemática, Universidad Católica del Norte, 2020 Proyecciones : Revista de Matemática, 2020 |
ISSN: | 0716-0917 0717-6279 |
Popis: | International audience; There exist two semi-local rings of order 6 without identity for the multiplication. We classify up to coordinate permutation self-orthogonal codes of length n and size 6 n/2 over these rings (called here quasi self-dual codes or QSD) till the length n = 8. To any such code is attached canonically a Z 6-code, which, when self-dual, produces an unimodular lattice by Construction A. |
Databáze: | OpenAIRE |
Externí odkaz: |