Irrigation events detection over Intensively irrigated grassland plots using Sentinel-1 data

Autor: Hatem Belhouchette, Mehrez Zribi, Ibrahim Fayad, Hassan Bazzi, Nicolas Baghdadi, François Charron
Přispěvatelé: Territoires, Environnement, Télédétection et Information Spatiale (UMR TETIS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Gestion de l'Eau, Acteurs, Usages (UMR G-EAU), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM), Fonctionnement et conduite des systèmes de culture tropicaux et méditerranéens (UMR SYSTEM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), French Space Study Center (CNES) National Research Institute for Agriculture, Food and the Environment (INRAE)Occitanie region of France Mediterranean Agronomic Institute of Montpellier (CIHEAM-IAMM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre International de Hautes Etudes Agronomiques Méditerranéennes - Institut Agronomique Méditerranéen de Montpellier (CIHEAM-IAMM), Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Centre International de Hautes Études Agronomiques Méditerranéennes (CIHEAM)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, This research received funding from the French Space Study Center (CNES, TOSCA 2020 project), the National Research Institute for Agriculture, Food and the Environment (INRAE), the Occitanie region of France and the Mediterranean Agronomic Institute of Montpellier (CIHEAM-IAMM).
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Irrigation
010504 meteorology & atmospheric sciences
Threshold limit value
Science
Crau plain
0211 other engineering and technologies
Context (language use)
02 engineering and technology
GESTION DES EAUX
01 natural sciences
Normalized Difference Vegetation Index
Grassland
irrigation
INDICATEUR
TAILLE DES PARCELLES
CULTURE IRRIGUEE
TELEDETECTION
change detection
021101 geological & geomatics engineering
0105 earth and related environmental sciences
2. Zero hunger
Hydrology
geography
geography.geographical_feature_category
[SDE.IE]Environmental Sciences/Environmental Engineering
15. Life on land
SUD EST
6. Clean water
Water resources
EAU D'IRRIGATION
PRAIRIE
CHANGEMENT CLIMATIQUE
[SDE]Environmental Sciences
TECHNIQUE D'IMAGERIE
grassland
Sentinel-1
France
General Earth and Planetary Sciences
Environmental science
Scale (map)
Change detection
Zdroj: Remote Sensing
Remote Sensing, MDPI, 2020, 12 (24), pp.4058. ⟨10.3390/rs12244058⟩
Remote Sensing; Volume 12; Issue 24; Pages: 4058
Remote Sensing, Vol 12, Iss 4058, p 4058 (2020)
Remote Sensing, 2020, 12 (24), pp.4058. ⟨10.3390/rs12244058⟩
ISSN: 2072-4292
DOI: 10.3390/rs12244058⟩
Popis: Better management of water consumption and irrigation schedule in irrigated agriculture is essential in order to save water resources, especially at regional scales and under changing climatic conditions. In the context of water management, the aim of this study is to monitor irrigation activities by detecting the irrigation episodes at plot scale using the Sentinel-1 (S1) C-band SAR (synthetic-aperture radar) time series over intensively irrigated grassland plots located in the Crau plain of southeast France. The method consisted of assessing the newly developed irrigation detection model (IDM) at plot scale over the irrigated grassland plots. First, four S1-SAR time series acquired from four different S1-SAR acquisitions (different S1 orbits), each at six-day revisit time, were obtained over the study site. Next, the IDM was applied at each available SAR image from each S1-SAR series to obtain an irrigation indicator at each SAR image (no, low, medium, or high irrigation possibility). Then, the irrigation indicators obtained at each image from each S1-SAR time series (four series) were added and combined by threshold value criteria to determine the existence or absence of an irrigation event. Finally, the performance of the IDM for irrigation detection was assessed by comparing the in situ recorded irrigation events at each plot and the detected irrigation events. The results show that using only the VV polarization, 82.4% of the in situ registered irrigation events are correctly detected with an F_score value reaching 73.8%. Less accuracy is obtained using only the VH polarization, where 79.9% of the in situ irrigation events are correctly detected with an F_score of 72.2%. The combined use of the VV and VH polarization showed that 74.1% of the irrigation events are detected with a higher F_score value of 76.4%. The analysis of the undetected irrigation events revealed that, in the presence of very well-developed vegetation cover (normalized difference of vegetation index (NDVI) ≥ 0.8); higher uncertainty in irrigation detection is observed, where 80% of the undetected events correspond to an NDVI value greater than 0.8. The results also showed that small-sized plots encounter more false irrigation detections than large-sized plots certainly because the pixel spacing of S1 data (10 m × 10 m) is not adapted to small size plots. The obtained results prove the efficiency of the S1 C-band data and the IDM for detecting irrigation events at the plot scale, which would help in improving the irrigation water management at large scales especially with availability and global coverage of the S1 product.
Databáze: OpenAIRE