Glioblastoma adhesion in a quick-fit hybrid microdevice
Autor: | Hsieh-Fu Tsai, Amy Q. Shen, Kazumi Toda-Peters |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
Bubble-free Endothelium Cell Biomedical Engineering 02 engineering and technology 01 natural sciences Article Multiplexing Shear flow Electricity Cell Line Tumor Lab-On-A-Chip Devices Electric field Cell Adhesion medicine Shear stress Humans Molecular Biology Glioblastoma adhesion Dimethyl siloxane 010401 analytical chemistry Direct current Endothelial Cells Equipment Design Adhesion 021001 nanoscience & nanotechnology medicine.disease 0104 chemical sciences medicine.anatomical_structure Biophysics Glioblastoma Shear Strength 0210 nano-technology |
Zdroj: | Biomedical Microdevices |
ISSN: | 1572-8781 1387-2176 |
DOI: | 10.1007/s10544-019-0382-0 |
Popis: | Translational research requires reliable biomedical microdevices (BMMD) to mimic physiological conditions and answer biological questions. In this work, we introduce a reversibly sealed quick-fit hybrid BMMD that is operator-friendly and bubble-free, requires low reagent and cell consumption, enables robust and high throughput performance for biomedical experiments. Specifically, we fabricate a quick-fit poly(methyl methacrylate) and poly(dimethyl siloxane) (PMMA/PDMS) prototype to illustrate its utilities by probing the adhesion of glioblastoma cells (T98G and U251MG) to primary endothelial cells. In static condition, we confirm that angiopoietin-Tie2 signaling increases the adhesion of glioblastoma cells to endothelial cells. Next, to mimic the physiological hemodynamic flow and investigate the effect of physiological electric field, the endothelial cells are pre-conditioned with concurrent shear flow (with fixed 1 Pa shear stress) and direct current electric field (dcEF) in the quick-fit PMMA/PDMS BMMD. With shear flow alone, endothelial cells exhibit classical parallel alignment; while under a concurrent dcEF, the cells align perpendicularly to the electric current when the dcEF is greater than 154 V m− 1. Moreover, with fixed shear stress of 1 Pa, T98G glioblastoma cells demonstrate increased adhesion to endothelial cells conditioned in dcEF of 154 V m− 1, while U251MG glioblastoma cells show no difference. The quick-fit hybrid BMMD provides a simple and flexible platform to create multiplex systems, making it possible to investigate complicated biological conditions for translational research. |
Databáze: | OpenAIRE |
Externí odkaz: |