Modelling agricultural risk in a large scale positive mathematical programming model
Autor: | José Vila, Iván Arribas, Sergio Gomez y Paloma, Angel Perni, Kamel Louhichi |
---|---|
Přispěvatelé: | Universidad de Valencia VIU, Partenaires INRAE, Economie Publique (ECO-PUB), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), European Commission - Joint Research Centre [Seville] (JRC), Nicholas Tsounis, Aspasia Vlachvei |
Rok vydání: | 2020 |
Předmět: |
Mathematical optimization
Economics and Econometrics Scale (ratio) Computer science Computation programmation mathématique positive 020209 energy expected utility Sample (statistics) highest posterior density 02 engineering and technology politique agricole commune risk and uncertainty 0202 electrical engineering electronic engineering information engineering European common agricultural policy Expected utility hypothesis agriculture Estimation risque et incertitude 2. Zero hunger business.industry 020208 electrical & electronic engineering [SHS.ECO]Humanities and Social Sciences/Economics and Finance 16. Peace & justice modèle de ferme PMP Computer Science Applications Agriculture business Common Agricultural Policy Scale model positive mathematical programming |
Zdroj: | International Journal of Computational Economics and Econometrics International Journal of Computational Economics and Econometrics, Inderscience Publishers, 2020, 10 (1), pp.2-32. ⟨10.1504/IJCEE.2020.104136⟩ |
ISSN: | 1757-1189 1757-1170 |
Popis: | International audience; Mathematical programming has been extensively used to account for risk in farmers' decision making. The recent development of the positive mathematical programming (PMP) has renewed the need to incorporate risk in a more robust and flexible way. Most of the existing PMP-risk models have been tested at farm-type level and for a very limited sample of farms. This paper presents and tests a novel methodology for modelling risk at individual farm level in a large scale model, called individual farm model for common agricultural policy analysis (IFM-CAP). Results show a clear trade-off between including and excluding the risk specification. Albeit both alternatives provide very close estimates, simulation results show that the explicit inclusion of risk in the model allows isolating risk effects on farmer behaviour. However, this specification increases three times the computation time required for estimation.; La programmation mathématique a été largement utilisée pour tenir compte du risque dans la prise de décision des agriculteurs. Le développement récent de la programmation mathématique positive (PMP) a renouvelé la nécessité d'incorporer le risque d'une manière plus robuste et flexible. La plupart des modèles de PMP-risque existants ont été testés au niveau de l'exploitation et pour un échantillon très limité d'exploitations. Cet article présente et teste une nouvelle méthodologie pour modéliser le risque au niveau de chaque ferme dans un modèle à grande échelle, appelé IFM-CAP. Les résultats montrent un compromis clair entre l'inclusion et l'exclusion de la spécification du risque. Bien que les deux alternatives fournissent des estimations très proches, les résultats de la simulation montrent que l'inclusion explicite du risque dans le modèle permet d'isoler les effets du risque sur le comportement des agriculteurs. Cependant, cette spécification augmente trois fois le temps de calcul requis pour l'estimation. |
Databáze: | OpenAIRE |
Externí odkaz: |