Nonlinear dynamic characterization of two-dimensional materials
Autor: | Marco Amabili, Santiago J. Cartamil-Bueno, Farbod Alijani, Dejan Davidovikj, Peter G. Steeneken, Herre S. J. van der Zant |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Science
General Physics and Astronomy Duffing equation Modulus Young's modulus 02 engineering and technology 01 natural sciences Article General Biochemistry Genetics and Molecular Biology Physics::Fluid Dynamics Quantitative Biology::Subcellular Processes symbols.namesake Resonator 0103 physical sciences lcsh:Science 010306 general physics Physics Multidisciplinary General Chemistry Mechanics 021001 nanoscience & nanotechnology Characterization (materials science) Nonlinear system Membrane symbols lcsh:Q 0210 nano-technology Material properties |
Zdroj: | Nature Communications, Vol 8, Iss 1, Pp 1-7 (2017) Nature Communications, 8(1) Nature Communications |
ISSN: | 2041-1723 |
Popis: | Owing to their atomic-scale thickness, the resonances of two-dimensional (2D) material membranes show signatures of nonlinearities at forces of only a few picoNewtons. Although the linear dynamics of membranes is well understood, the exact relation between the nonlinear response and the resonator’s material properties has remained elusive. Here we show a method for determining the Young’s modulus of suspended 2D material membranes from their nonlinear dynamic response. To demonstrate the method, we perform measurements on graphene and MoS2 nanodrums electrostatically driven into the nonlinear regime at multiple driving forces. We show that a set of frequency response curves can be fitted using only the cubic spring constant as a fit parameter, which we then relate to the Young’s modulus of the material using membrane theory. The presented method is fast, contactless, and provides a platform for high-frequency characterization of the mechanical properties of 2D materials. The mechanical resonances of atomically thin membranes show nonlinear responses at driving forces in the picoNewton range. Here, the authors develop a contactless method to extract the Young’s modulus of 2D materials from the nonlinear dynamic response of these nanomechanical resonators. |
Databáze: | OpenAIRE |
Externí odkaz: |