Long Time Evolutionary Dynamics of Phenotypically Structured Populations in Time-Periodic Environments

Autor: Sepideh Mirrahimi, Susely Figueroa Iglesias
Přispěvatelé: Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 ( IMT ), Université Toulouse 1 Capitole ( UT1 ) -Université Toulouse - Jean Jaurès ( UT2J ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-PRES Université de Toulouse-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2018
Předmět:
Hamilton-Jacobi equation with constraint
Population
01 natural sciences
[ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP]
Mathematics - Analysis of PDEs
FOS: Mathematics
[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]
Quantitative Biology::Populations and Evolution
Applied mathematics
Growth rate
0101 mathematics
Evolutionary dynamics
education
Selection (genetic algorithm)
Mathematics
education.field_of_study
Time periodic coefficients
Applied Mathematics
Dirac (video compression format)
010102 general mathematics
Dynamics (mechanics)
35B27
Dirac concentrations
Time-periodic coefficients
Adaptive evolution AMS subject classifications: 35B10
92D15
010101 applied mathematics
Constraint (information theory)
Computational Mathematics
Distribution (mathematics)
35K57
Parabolic integro-differential equations
Analysis
Analysis of PDEs (math.AP)
Zdroj: SIAM Journal on Mathematical Analysis
SIAM Journal on Mathematical Analysis, 2018, ⟨10.1137/18M1175185⟩
SIAM Journal on Mathematical Analysis, Society for Industrial and Applied Mathematics, 2018, ⟨10.1137/18M1175185⟩
ISSN: 1095-7154
0036-1410
DOI: 10.1137/18m1175185
Popis: International audience; We study the long time behavior of a parabolic Lotka-Volterra type equation considering a time-periodic growth rate with non-local competition. Such equation describes the dynamics of a phenotypically struc-tured population under the effect of mutations and selection in a fluctuating environment. We first prove that, in long time, the solution converges to the unique periodic solution of the problem. Next, we describe this periodic solution asymptotically as the effect of the mutations vanish. Using a theory based on Hamilton-Jacobi equations with constraint, we prove that, as the effect of the mutations vanishes, the solution concentrates on a single Dirac mass, while the size of the population varies periodically in time. When the effect of the mutations are small but nonzero, we provide some formal approximations of the moments of the population's distribution. We then show, via some examples, how such results could be compared to biological experiments.
Databáze: OpenAIRE