Cross-contamination of a UROtsa stock with T24 cells--molecular comparison of different cell lines and stocks
Autor: | Jörg Hippler, P. Rozynek, Daniel G. Weber, Yvonne von der Gathen, O′Brien Igwilo-Okuefuna, Thomas Brüning, Elke Dopp, Irina Raiko, Ricarda Zdrenka, Georg Johnen, Oleksandr Bryk, Christian Johannes |
---|---|
Rok vydání: | 2013 |
Předmět: |
lcsh:Medicine
medicine.disease_cause Molecular level RNA interference Molecular cell biology Basic Cancer Research lcsh:Science Antigens Viral Tumor Multidisciplinary Cell immortalization Bladder Cancer and Urothelial Neoplasias of the Urinary Tract Cell Differentiation Physik (inkl. Astronomie) Bladder Cancer Oncology DNA methylation Medicine Epigenetics DNA modification Biologie Research Article Urothelial Cell Urology Chemie Biology Real-Time Polymerase Chain Reaction Cell Line Cell Line Tumor medicine Genetics Cancer Genetics Humans RNA Messenger lcsh:R Cancers and Neoplasms Sequence Analysis DNA DNA Contamination DNA Methylation Molecular biology MicroRNAs Genitourinary Tract Tumors Cell culture Cancer research lcsh:Q Gene expression Urothelium Carcinogenesis Microsatellite Repeats Developmental Biology |
Zdroj: | PLoS ONE PLoS ONE, Vol 8, Iss 5, p e64139 (2013) |
ISSN: | 1932-6203 |
Popis: | Background:UROtsa is an authentic, immortalized human urothelial cell line that is used to study the effects of metals and other toxic substances, mostly in the context of bladder cancer carcinogenesis. Unusual properties on the molecular level of a provided UROtsa cell line stock prompted us to verify its identity.Methods:UROtsa cell line stocks from different sources were tested on several molecular levels and compared with other cell lines. MicroRNA and mRNA expression was determined by Real-Time PCR. Chromosome numbers were checked and PCR of different regions of the large T-antigen was performed. DNA methylation of RARB, PGR, RASSF1, CDH1, FHIT, ESR1, C1QTNF6, PTGS2, SOCS3, MGMT, and LINE1 was analyzed by pyrosequencing and compared with results from the cell lines RT4, T24, HeLa, BEAS-2B, and HepG2. Finally, short tandem repeat (STR) profiling was applied.Results:All tested UROtsa cell line stocks lacked large T-antigen. STR analysis unequivocally identified our main UROtsa stock as the bladder cancer cell line T24, which was different from two authentic UROtsa stocks that served as controls. Analysis of DNA methylation patterns and RNA expression confirmed their differences. Methylation pattern and mRNA expression of the contaminating T24 cell line showed moderate changes even after long-term culture of up to 56 weeks, whereas miRNAs and chromosome numbers varied markedly.Conclusions:It is important to check the identity of cell lines, especially those that are not distributed by major cell banks. However, for some cell lines STR profiles are not available. Therefore, new cell lines should either be submitted to cell banks or at least their STR profile determined and published as part of their initial characterization. Our results should help to improve the identification of UROtsa and other cells on different molecular levels and provide information on the use of urothelial cells for long-term experiments. © 2013 Johnen et al. OA gold |
Databáze: | OpenAIRE |
Externí odkaz: |