Maltodextrin-induced intestinal injury in a neonatal mouse model
Autor: | Yan Liu, Camilia R. Martin, Pratibha Singh, George Perides, David Ramiro-Cortijo, Lady Leidy Sanchez-Fernandez, William Yakah, Esli Medina-Morales, Pedro Ochoa-Allemant, Steven D. Freedman |
---|---|
Rok vydání: | 2020 |
Předmět: |
0301 basic medicine
Klebsiella pneumoniae lcsh:Medicine Medicine (miscellaneous) Neonatal mouse model Pathogenesis 0302 clinical medicine Immunology and Microbiology (miscellaneous) Necrotizing enterocolitis Intestine Small Intestinal Mucosa Hypoxia Microvilli biology Tight junction Cytokines Goblet Cells Inflammation Mediators medicine.symptom lcsh:RB1-214 Research Article medicine.medical_specialty Programmed cell death Neuroscience (miscellaneous) Permeability General Biochemistry Genetics and Molecular Biology 03 medical and health sciences Maltodextrin Enterocolitis Necrotizing Polysaccharides 030225 pediatrics Internal medicine lcsh:Pathology medicine Animals Mucin-2 Tight Junction Proteins Intestinal permeability business.industry lcsh:R Hypoxia (medical) biology.organism_classification medicine.disease Mice Inbred C57BL Disease Models Animal 030104 developmental biology Endocrinology Animals Newborn Infant formula Intestinal injury business |
Zdroj: | Disease Models & Mechanisms article-version (VoR) Version of Record Disease Models & Mechanisms, Vol 13, Iss 8 (2020) |
ISSN: | 1754-8411 1754-8403 |
DOI: | 10.1242/dmm.044776 |
Popis: | Prematurity and enteral feedings are major risk factors for intestinal injury leading to necrotizing enterocolitis (NEC). An immature digestive system can lead to maldigestion of macronutrients and increased vulnerability to intestinal injury. The aim of this study was to test in neonatal mice the effect of maltodextrin, a complex carbohydrate, on the risk of intestinal injury. The goal was to develop a robust and highly reproducible murine model of intestinal injury that allows insight into the pathogenesis and therapeutic interventions of nutrient-driven intestinal injury. Five- to 6-day-old C57BL/6 mice were assigned to the following groups: dam fed (D); D+hypoxia+Klebsiella pneumoniae; maltodextrin-dominant human infant formula (M) only; M+hypoxia; and M+hypoxia+K. pneumoniae. The mice in all M groups were gavage fed five times a day for 4 days. Mice were exposed to hypoxia twice a day for 10 min prior to the first and last feedings, and K. pneumoniae was added to feedings as per group assignment. Mice in all M groups demonstrated reduced body weight, increased small intestinal dilatation and increased intestinal injury scores. Maltodextrin-dominant infant formula with hypoxia led to intestinal injury in neonatal mice accompanied by loss of villi, increased MUC2 production, altered expression of tight junction proteins, enhanced intestinal permeability, increased cell death and higher levels of intestinal inflammatory mediators. This robust and highly reproducible model allows for further interrogation of the effects of nutrients on pathogenic factors leading to intestinal injury and NEC in preterm infants. This article has an associated First Person interview with the first author of the paper. Summary: Using maltodextrin-dominant human infant formula feeding in combination with hypoxia, we developed a highly reproducible model of small intestinal injury in the neonatal mouse. |
Databáze: | OpenAIRE |
Externí odkaz: |