Kernel density classification for spherical data

Autor: Agnese Panzera, Charles C. Taylor, Marco Di Marzio, Stefania Fensore
Jazyk: angličtina
Rok vydání: 2019
Předmět:
ISSN: 0167-7152
Popis: Classifying observations coming from two different spherical populations by using a nonparametric method appears to be an unexplored field, although clearly worth to pursue. We propose some decision rules based on spherical kernel density estimation and we provide asymptotic L 2 properties. A real-data application using global climate data is finally discussed.
Databáze: OpenAIRE