Mountain summit detection with Deep Learning: evaluation and comparison with heuristic methods
Autor: | Darian Frajberg, Rocio Nahime Torres, Piero Fraternali, Federico Milani |
---|---|
Rok vydání: | 2019 |
Předmět: |
Computer science
Geography Planning and Development 0211 other engineering and technologies 02 engineering and technology Citizen science Environmental Science (miscellaneous) Crowdsourcing computer.software_genre Deep Learning Mountains Region of interest Earth and Planetary Sciences (miscellaneous) Segmentation Digital elevation model Engineering (miscellaneous) 021101 geological & geomatics engineering 021110 strategic defence & security studies geography geography.geographical_feature_category Summit Landform business.industry Heuristic Deep learning DEM GIS Data mining Artificial intelligence business Landforms mapping computer |
Zdroj: | Applied Geomatics. 12:225-246 |
ISSN: | 1866-928X 1866-9298 |
Popis: | Landform detection and analysis from Digital Elevation Models (DEM) of the Earth has been boosted by the availability of high-quality public data sets. Current landform identification methods apply heuristic algorithms based on predefined landform features, fine tuned with parameters that may depend on the region of interest. In this paper, we investigate the use of Deep Learning (DL) models to identify mountain summits based on features learned from data examples. We train DL models with the coordinates of known summits found in public databases and apply the trained models to DEM data obtaining as output the coordinates of candidate summits. We introduce two formulations of summit recognition (as a classification or a segmentation task), describe the respective DL models, compare them with heuristic methods quantitatively, illustrate qualitatively their performances, and discuss the challenges of training DL methods for landform recognition with highly unbalanced and noisy data sets. |
Databáze: | OpenAIRE |
Externí odkaz: |