Increase of glial fibrillary acidic protein fragments in the spinal cord of motor neuron degeneration mutant mouse

Autor: Hisahide Takahashi, Yutaka Nagata, Koiti Titani, Masato Ando, Taei Matsui, Toshiaki Kato, Kimikazu Fujita, Genzoh Isomura, Masamitsu Yamauchi
Rok vydání: 1998
Předmět:
Molecular Sequence Data
Central nervous system
Mice
Mice
Neurologic Mutants

chemistry.chemical_compound
Degenerative disease
Reference Values
Glial Fibrillary Acidic Protein
medicine
Animals
Humans
Electrophoresis
Gel
Two-Dimensional

Amino Acid Sequence
Motor Neuron Disease
Amyotrophic lateral sclerosis
Molecular Biology
Motor Neurons
Glial fibrillary acidic protein
biology
General Neuroscience
Coomassie Brilliant Blue
Amyotrophic Lateral Sclerosis
Homozygote
Anatomy
Motor neuron
medicine.disease
Spinal cord
GFAP stain
Immunohistochemistry
Molecular biology
Peptide Fragments
Mice
Inbred C57BL

Disease Models
Animal

medicine.anatomical_structure
Spinal Cord
nervous system
chemistry
Nerve Degeneration
biology.protein
Electrophoresis
Polyacrylamide Gel

Neurology (clinical)
Developmental Biology
Zdroj: Brain Research. 785:31-40
ISSN: 0006-8993
DOI: 10.1016/s0006-8993(97)00612-4
Popis: We analyzed protein fractions extracted from the spinal cord of the motor neuron degeneration (Mnd) mouse, a mutant that exhibits progressive degeneration of lower spinal motor neurons, by one- and two-dimensional polyacrylamide gel electrophoresis (PAGE) after solubilization of the tissue with medium containing sodium dodecyl sulfate (SDS)-urea during growth of the animal, in comparison with those of age-matched controls (C57BL/6). Several protein spots were detected around a region of pI 5.6-6.0 and molecular mass of 35-50 kDa in Mnd spinal cord tissue on the two-dimensional PAGE separation profile with Coomassie brilliant blue staining, while only a few spots around the same region were found in the control spinal cord. These spots were all immunoreactive with an antibody against glial fibrillary acidic protein (GFAP), a cytoskeleton filamentous protein specific to astroglial cells. The protein spot with molecular mass of 50 kDa showed immunoreactivity with anti-GFAP antibody, had a blocked amino-terminus, and is assumed to be intact GFAP. Several protein spots with slightly smaller molecular masses of 35 to 48 kDa lacked the head domain of the GFAP molecule as a result of cleavage at the 29th and 56th residues from the amino terminus. In Mnd spinal cord tissue, the densities of the immunoreactive GFAP bands with smaller molecular masses increased with development, and became dominant at the time of the appearance of behavioral paralytic gait around 6 to 7 months of age. These results suggest that the increased GFAPs devoid of head domains are related to the degenerative loss of motor neurons in the Mnd spinal cord. Histopathological and GFAP immunohistochemical examination of Mnd spinal cord preparation demonstrated progressive degenerative loss of motor neurons, and considerable increases in number of GFAP-stained astrocytes in the ventral horn at 7 to 9 months of age. These processes of degenerative loss of motor neurons and proliferation of reactive astrocytes with increased levels of fragmented GFAP in the Mnd spinal cord during development seem to be characteristic and preceded the deterioration of motor activities in this animal model of amyotrophic lateral sclerosis.
Databáze: OpenAIRE