Fused Filament Fabrication 4D Printing of a Highly Extensible, Self-Healing, Shape Memory Elastomer Based on Thermoplastic Polymer Blends
Autor: | Bangan Peng, Tianxiong Ju, Kevin A. Cavicchi, Yunchong Yang |
---|---|
Rok vydání: | 2020 |
Předmět: |
chemistry.chemical_classification
Thermoplastic Materials science Fused deposition modeling Fused filament fabrication 02 engineering and technology 010402 general chemistry 021001 nanoscience & nanotechnology Elastomer 01 natural sciences Flexible electronics 0104 chemical sciences law.invention Shape-memory polymer chemistry law General Materials Science Polymer blend Composite material Thermoplastic elastomer 0210 nano-technology |
Zdroj: | ACS applied materialsinterfaces. 13(11) |
ISSN: | 1944-8252 |
Popis: | A polymer blend with high extensibility, exhibiting both shape memory and self-healing, was 4D printed using a low-cost fused filament fabrication (FFF, or fused deposition modeling, FDM) 3D printer. The material is composed of two commercially available commodity polymers, polycaprolactone (PCL), a semi-crystalline thermoplastic, and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS), a thermoplastic elastomer. The shape memory and self-healing properties of the blends were studied systematically through thermo-mechanical and morphological characterization, providing insight into the shape memory mechanism useful for tuning the material properties. In 3D-printed articles, the orientation of the semi-crystalline and micro-phase-separated domains leads to improvement of the shape memory property and extensibility of this material compared to compression-molded samples. By controlling the orientation of the printed fibers, we achieved a high strain at break over 1200%, outperforming previously reported flexible 4D-printed materials. The self-healing agent, PCL, enables the material to heal scratches and cracks and adhere two surfaces after annealing at 80 °C for 30 min. The high performance, multi-functionality, and potential scalability make it a promising candidate for a broad spectrum of applications, including flexible electronics, soft actuators, and deployable devices. |
Databáze: | OpenAIRE |
Externí odkaz: |