L -estimates for the square root of elliptic systems with mixed boundary conditions
Autor: | Moritz Egert |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11) |
Rok vydání: | 2018 |
Předmět: |
Pure mathematics
mixed boundary conditions Primary: 35J47 47D06 47A60. Secondary: 42B20 47B44 [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] 01 natural sciences Domain (mathematical analysis) Mathematics - Analysis of PDEs Square root Classical Analysis and ODEs (math.CA) FOS: Mathematics Neumann boundary condition Elliptic systems of second order [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Order (group theory) Boundary value problem 0101 mathematics Calderón-Zygmund decomposition for Sobolev functions Mathematics Semigroup Applied Mathematics 010102 general mathematics H∞ functional calculus 010101 applied mathematics Mathematics - Classical Analysis and ODEs Bounded function Kato square root problem Isomorphism Lamé system Analysis Analysis of PDEs (math.AP) |
Zdroj: | Journal of Differential Equations Journal of Differential Equations, Elsevier, 2018, 265 (4), pp.1279-1323. ⟨10.1016/j.jde.2018.04.002⟩ Journal of Differential Equations, Elsevier, In press |
ISSN: | 0022-0396 1090-2732 |
Popis: | This article focuses on Lp-estimates for the square root of elliptic systems of second order in divergence form on a bounded domain. We treat complex bounded measurable coefficients and allow for mixed Dirichlet/Neumann boundary conditions on domains beyond the Lipschitz class. If there is an associated bounded semigroup on Lp0 , then we prove that the square root extends for all p $\in$ (p0, 2) to an isomorphism between a closed subspace of W1p carrying the boundary conditions and Lp. This result is sharp and extrapolates to exponents slightly above 2. As a byproduct, we obtain an optimal p-interval for the bounded H$\infty$-calculus on Lp. Estimates depend holomorphically on the coefficients, thereby making them applicable to questions of non-autonomous maximal regularity and optimal control. For completeness we also provide a short summary on the Kato square root problem in L2 for systems with lower order terms in our setting. Upload of the published version, including a minor correction of Proposition 8.1 |
Databáze: | OpenAIRE |
Externí odkaz: |