Design of carbon supports for metal-catalyzed acetylene hydrochlorination
Autor: | Adam H. Clark, Frank Krumeich, M.C. Román-Martínez, Maria Angeles Lillo-Rodenas, Simon Büchele, Selina K. Kaiser, Javier Pérez-Ramírez, Ana Amorós-Pérez, Ivan Surin |
---|---|
Přispěvatelé: | Universidad de Alicante. Departamento de Química Inorgánica, Universidad de Alicante. Instituto Universitario de Materiales, Materiales Carbonosos y Medio Ambiente |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Science
General Physics and Astronomy chemistry.chemical_element Acetylene hydrochlorination 010402 general chemistry 01 natural sciences General Biochemistry Genetics and Molecular Biology Article Catalysis Metal chemistry.chemical_compound Adsorption Porous materials Heterogeneous catalysis Química Inorgánica Multidisciplinary 010405 organic chemistry General Chemistry Carbon supports 0104 chemical sciences Ruthenium Polyvinyl chloride chemistry Chemical engineering Acetylene visual_art visual_art.visual_art_medium Platinum Carbon Metal-catalyzed |
Zdroj: | Nature Communications, Vol 12, Iss 1, Pp 1-8 (2021) Nature Communications, 12 (1) Nature Communications RUA. Repositorio Institucional de la Universidad de Alicante Universidad de Alicante (UA) |
ISSN: | 2041-1723 |
Popis: | For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production. Nature Communications, 12 (1) ISSN:2041-1723 |
Databáze: | OpenAIRE |
Externí odkaz: |