Autor: |
Evans, D. T., Piekarczyk, M. S., Todd Allen, Boyson, J. E., Yeager, M., Hughes, A. L., Gotch, F. M., Hinshaw, V. S., Watkins, D. I. |
Předmět: |
|
Zdroj: |
Scopus-Elsevier |
Popis: |
MHC class I molecules play a crucial role in immunity to viral infections by presenting viral peptides to cytotoxic T lymphocytes. One of the hallmarks of MHC class I genes in outbred populations is their extraordinary polymorphism, yet the significance of this diversity is poorly understood. Certain species with reduced MHC class I diversity, such as the cotton-top tamarin (Saguinus oedipus), are more susceptible to fatal viral infections. To explore the relationship between this primate's limited MHC class I diversity and its susceptibility to viruses, we infected five cotton-top tamarins with influenza virus. Every tamarin recognized the same immunodominant CTL epitope of the influenza nucleoprotein. Surprisingly, this nucleoprotein peptide was bound by Saoe-G*08, an MHC class I molecule expressed by every cotton-top tamarin. Two tamarins also made a subdominant response to an epitope of the matrix (M1) protein. This peptide appeared to be bound by another common MHC class I molecule. With the exception of an additional subdominant response to the polymerase (PB2) protein in one individual, no other influenza-specific CTL responses were detected. In populations or species with limited MHC class I polymorphism like the cotton-top tamarin, a dependence on shared MHC class I molecules may enhance susceptibility to viral infection, since viruses that evade MHC class I-restricted recognition in one individual will likely evade recognition in the majority of individuals. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|