Algebraic Properties of Finite Neutrosophic Fields
Autor: | Chalapathi T, Kumaraswamy Naidu K, D, Harish Babu |
---|---|
Rok vydání: | 2022 |
Předmět: | |
DOI: | 10.5281/zenodo.6426396 |
Popis: | We explore a finite Neutrosophic field 𝑭𝒑 (𝑰) and its Neutrosophic multiplicative group 𝑭𝒑 (𝑰) × in this study. We first show |𝑭𝒑 (𝑰) ×| = (𝒑 − 𝟏) 𝟐 and then its algebraic properties are studied. The Neutrosophic Fermat's and Little Fermat's theorems over 𝑭𝒑 (𝑰) × are then proved. Finally, this paper investigates some applications of Neutrosophic Fermat's theorem over 𝑭𝒑 (𝑰) × with various illustrations. |
Databáze: | OpenAIRE |
Externí odkaz: |