Regularity for the stationary Navier-Stokes equations over bumpy boundaries and a local wall law

Autor: Mitsuo Higaki, Christophe Prange
Přispěvatelé: Department of Mathematics, Graduate School of Science, Kyoto University [Kyoto], Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2019
Předmět:
Zdroj: Calculus of Variations and Partial Differential Equations
Calculus of Variations and Partial Differential Equations, Springer Verlag, 2020, 59 (4), pp.131. ⟨10.1007/s00526-020-01789-3⟩
ISSN: 0944-2669
1432-0835
DOI: 10.48550/arxiv.1911.12609
Popis: We investigate regularity estimates for the stationary Navier-Stokes equations above a highly oscillating Lipschitz boundary with the no-slip boundary condition. Our main result is an improved Lipschitz regularity estimate at scales larger than the boundary layer thickness. We also obtain an improved $C^{1,\mu}$ estimate and identify the building blocks of the regularity theory, dubbed `Navier polynomials'. In the case when some structure is assumed on the oscillations of the boundary, for instance periodicity, these estimates can be seen as local error estimates. Although we handle the regularity of the nonlinear stationary Navier-Stokes equations, our results do not require any smallness assumption on the solutions.
Comment: 42 pages
Databáze: OpenAIRE