Fabrication, Mechanical Modeling, and Experiments of a 3D-Motion Soft Actuator for Flexible Sensing
Autor: | Shihua Yuan, Zheng Kun Cheng, Jian Zhang, Junjie Zhou |
---|---|
Rok vydání: | 2020 |
Předmět: |
Materials science
Fabrication experiment General Computer Science Deformation (mechanics) business.industry General Engineering Linearity Mechanical engineering omnidirectional bending Bending Modular design Finite element method Enter soft actuator Computer Science::Other Computer Science::Robotics multiple degrees of freedom mechanical modeling General Materials Science flexible sensing lcsh:Electrical engineering. Electronics. Nuclear engineering Omnidirectional antenna Actuator business lcsh:TK1-9971 |
Zdroj: | IEEE Access, Vol 8, Pp 159100-159109 (2020) |
ISSN: | 2169-3536 |
DOI: | 10.1109/access.2020.3017447 |
Popis: | This paper introduces the modular design and manufacturing method, mechanical model, and test verification of a new type of soft actuator driven by fluid. First, the modular design scheme and driving principle of omnidirectional bending and elongation of the soft actuator are described. Three print-based elastic air cavities constrained by fire lines are distributed radially inside the actuator. The actuator can complete the 3 DOF motions of omnidirectional bending and elongation. From the basic principle of material mechanics, a novel mechanical model of the soft elastomer actuator is established. By numerically solving the nonlinear model, the relationship between actuator elongation/bending angle and driving pressure is obtained. The theoretical prediction and test results show that the deformation of the actuator exhibits a linear relationship with pressure when the chambers are charged. Additionally, the maximum allowable load force on the actuator terminal also exhibits good linearity when the driving pressure increases. Furthermore, the established mechanical model, which considers gravity effects can more accurately describe the features of bend and elongation of the actuator. The results shows that the proposed model is more convenient than the FEM models. This study provides theoretical support for accurate control of a soft actuator. |
Databáze: | OpenAIRE |
Externí odkaz: |