Gradient bounds for radial maximal functions

Autor: Emanuel Carneiro, Cristian González-Riquelme
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Annales Fennici Mathematici
ISSN: 2737-114X
2737-0690
Popis: In this paper we study the regularity properties of certain maximal operators of convolution type at the endpoint $p=1$, when acting on radial data. In particular, for the heat flow maximal operator and the Poisson maximal operator, when the initial datum $u_0 \in W^{1,1}( \mathbb{R}^d)$ is a radial function, we show that the associated maximal function $u^*$ is weakly differentiable and $$\|\nabla u^*\|_{L^1(\mathbb{R}^d)} \lesssim_d \|\nabla u_0\|_{L^1(\mathbb{R}^d)}.$$ This establishes the analogue of a recent result of H. Luiro for the uncentered Hardy-Littlewood maximal operator, now in a centered setting with smooth kernels. In a second part of the paper, we establish similar gradient bounds for maximal operators on the sphere $\mathbb{S}^d$, when acting on polar functions. Our study includes the uncentered Hardy-Littlewood maximal operator, the heat flow maximal operator and the Poisson maximal operator on $\mathbb{S}^d$.
28 pages. V2 with minor updates and typos corrected
Databáze: OpenAIRE