Next-to$^k$ leading log expansions by chord diagrams

Autor: Karen Yeats, Julien Courtiel
Přispěvatelé: Equipe AMACC - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU), Department of Combinatorics and Optimization, University of Waterloo [Waterloo], Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Communications in Mathematical Physics
Communications in Mathematical Physics, Springer Verlag, 2020, 377, pp.469-501. ⟨10.1007/s00220-020-03691-7⟩
Commun.Math.Phys.
Commun.Math.Phys., 2020, 377 (1), pp.469-501. ⟨10.1007/s00220-020-03691-7⟩
ISSN: 0010-3616
1432-0916
DOI: 10.1007/s00220-020-03691-7⟩
Popis: Green functions in a quantum field theory can be expanded as bivariate series in the coupling and a scale parameter. The leading logs are given by the main diagonal of this expansion, i.e. the subseries where the coupling and the scale parameter appear to the same power; then the next-to leading logs are listed by the next diagonal of the expansion, where the power of the coupling is incremented by one, and so on. We give a general method for deriving explicit formulas and asymptotic estimates for any next-to$^k$ leading-log expansion for a large class of single scale Green functions. These Green functions are solutions to Dyson-Schwinger equations that are known by previous work to be expressible in terms of chord diagrams. We look in detail at the Green function for the fermion propagator in massless Yukawa theory as one example, and the Green function of the photon propagator in quantum electrodynamics as a second example, as well as giving general theorems. Our methods are combinatorial, but the consequences are physical, giving information on which terms dominate and on the dichotomy between gauge theories and other quantum field theories.
Comment: 31 pages, referee's comments incorporated
Databáze: OpenAIRE