Deformation of the O'Grady moduli spaces

Autor: Arvid Perego, Antonio Rapagnetta
Přispěvatelé: Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma]
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Journal für die reine und angewandte Mathematik
Journal für die reine und angewandte Mathematik, Walter de Gruyter, 2013, 678, pp.1--34. ⟨10.1515/CRELLE.2011.191⟩
ISSN: 0075-4102
1435-5345
DOI: 10.1515/CRELLE.2011.191⟩
Popis: In this paper we study moduli spaces of sheaves on an abelian or projective K3 surface. If $S$ is a K3, $v=2w$ is a Mukai vector on $S$, where $w$ is primitive and $w^{2}=2$, and $H$ is a $v-$generic polarization on $S$, then the moduli space $M_{v}$ of $H-$semistable sheaves on $S$ whose Mukai vector is $v$ admits a symplectic resolution $\widetilde{M}_{v}$. A particular case is the $10-$dimensional O'Grady example $\widetilde{M}_{10}$ of irreducible symplectic manifold. We show that $\widetilde{M}_{v}$ is an irreducible symplectic manifold which is deformation equivalent to $\widetilde{M}_{10}$ and that $H^{2}(M_{v},\mathbb{Z})$ is Hodge isometric to the sublattice $v^{\perp}$ of the Mukai lattice of $S$. Similar results are shown when $S$ is an abelian surface.
29 pages
Databáze: OpenAIRE