Popis: |
In aeronautics many Virtual/Augmented Reality (V/AR) facilities, such as flight simulators, control-tower simulators, remote towers and flight reconstruction software, rely on the assumption that the viewer will most likely stay still in a pre-defined position. For this reason, they can be dubbed Desktop Virtual/Augmented Reality (D-V/AR) interfaces, in contrast with ‘gaze-coupled’ V/AR interfaces, which take into account the viewpoint position within the rendering pipeline. Surprisingly, in spite of the rough perspective model being used, D-V/AR is often well accepted by both designers and final users. Indeed, in some cases, it yields to credible results. However, when the viewer’s eyes move far away from their ‘default’ position, the rendering outcome will be affected by significant error, resulting in a poorly immersive and/or unrealistic experience. This paper discusses gaze-dependent visual interfaces as a means to enhance Human- Machine Interaction (HMI) and visual perception in V/AR based aeronautical facilities. Within the dissertation, a classification of leading V/AR display techniques is given, including D-V/AR, Off-axis V/AR (O-V/AR), Generalized V/AR (G-V/AR), Stereoscopic V/AR (S-VAR), Head-coupled V/AR (H-V/AR) and Fish-Tank V/AR (F-V/AR). For each technique, benefits, downsides and constraints have been exposed. Also, a set of suitable applications for gaze-dependent HMI has been identified, including, but not limited to, flight simulation, flight reconstruction, air navigation services provision and unmanned aerial system governance. |