Regularity results for generalized double phase functionals
Autor: | Jehan Oh, Sun-Sig Byun |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Numerical Analysis
Class (set theory) Pure mathematics nonstandard growth Property (philosophy) regularity 35B65 Applied Mathematics quasiminimizer 010102 general mathematics 35J20 01 natural sciences Double phase Lavrentiev phenomenon 0103 physical sciences 010307 mathematical physics 0101 mathematics 49N60 Analysis double phase functional Harnack's inequality Mathematics |
Zdroj: | Anal. PDE 13, no. 5 (2020), 1269-1300 |
Popis: | We consider a wide class of functionals with the property of changing their growth and ellipticity properties according to the modulating coefficients in the framework of Musielak–Orlicz spaces. In particular, we provide an optimal condition on the modulating coefficient to establish the Hölder regularity and Harnack inequality for quasiminimizers of the generalized double phase functional with [math] -growth for two Young functions [math] and [math] . |
Databáze: | OpenAIRE |
Externí odkaz: |