Representation theory of a semisimple extension of the Takiff superalgebra
Autor: | Shun-Jen Cheng, Kevin Coulembier |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
General Mathematics 010102 general mathematics Mathematics::Rings and Algebras 02 engineering and technology Extension (predicate logic) 021001 nanoscience & nanotechnology 01 natural sciences Representation theory Superalgebra Simple (abstract algebra) Mathematics::Quantum Algebra FOS: Mathematics 0101 mathematics Representation Theory (math.RT) 0210 nano-technology Mathematics::Representation Theory Mathematics - Representation Theory Mathematics |
DOI: | 10.48550/arxiv.2005.11441 |
Popis: | We study a semisimple extension of a Takiff superalgebra, which turns out to have a remarkably rich representation theory. We determine the blocks in both the finite-dimensional and BGG module categories and also classify the Borel subalgebras. We further compute all extension groups between two finite-dimensional simple objects and prove that all non-principal blocks in the finite-dimensional module category are Koszul. |
Databáze: | OpenAIRE |
Externí odkaz: |