An Ansatz for computational undecidability in RNA automata

Autor: Adam J. Svahn, Mikhail Prokopenko
Jazyk: angličtina
Rok vydání: 2020
Předmět:
FOS: Computer and information sciences
Quantitative Biology::Biomolecules
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES
Formal Languages and Automata Theory (cs.FL)
Populations and Evolution (q-bio.PE)
Computer Science - Formal Languages and Automata Theory
Nonlinear Sciences::Cellular Automata and Lattice Gases
Agricultural and Biological Sciences (miscellaneous)
Quantitative Biology::Genomics
Quantitative Biology - Quantitative Methods
General Biochemistry
Genetics and Molecular Biology

Quantitative Biology::Subcellular Processes
ComputingMethodologies_PATTERNRECOGNITION
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
Artificial Intelligence
FOS: Biological sciences
Computer Science (miscellaneous)
Quantitative Biology - Populations and Evolution
Quantitative Methods (q-bio.QM)
Computer Science::Formal Languages and Automata Theory
MathematicsofComputing_DISCRETEMATHEMATICS
Popis: In this ansatz we consider theoretical constructions of RNA polymers into automata, a form of computational structure. The bases for transitions in our automata are plausible RNA enzymes that may perform ligation or cleavage. Limited to these operations, we construct RNA automata of increasing complexity; from the Finite Automaton (RNA-FA) to the Turing machine equivalent 2-stack PDA (RNA-2PDA) and the universal RNA-UPDA. For each automaton we show how the enzymatic reactions match the logical operations of the RNA automaton. A critical theme of the ansatz is the self-reference in RNA automata configurations that exploits the program-data duality but results in computational undecidability. We describe how computational undecidability is exemplified in the self-referential Liar paradox that places a boundary on a logical system, and by construction, any RNA automata. We argue that an expansion of the evolutionary space for RNA-2PDA automata can be interpreted as a hierarchical resolution of computational undecidability by a meta-system (akin to Turing’s oracle), in a continual process analogous to Turing’s ordinal logics and Post’s extensible recursively generated logics. On this basis, we put forward the hypothesis that the resolution of undecidable configurations in RNA automata represent a novelty generation mechanism and propose avenues for future investigation of biological automata.
Databáze: OpenAIRE