Local Uniformization of Abhyankar Valuations
Autor: | Steven Dale Cutkosky |
---|---|
Rok vydání: | 2022 |
Předmět: |
Algebraic function field
Pure mathematics 13A18 13H05 14E15 Mathematics::Commutative Algebra General Mathematics 010102 general mathematics 010103 numerical & computational mathematics Mathematics - Commutative Algebra Commutative Algebra (math.AC) 01 natural sciences Valuation ring Uniformization (probability theory) Separable space Ground field Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Residue field FOS: Mathematics 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
Zdroj: | Michigan Mathematical Journal. 71 |
ISSN: | 0026-2285 |
DOI: | 10.1307/mmj/20205888 |
Popis: | We prove local uniformization of Abhyankar valuations of an algebraic function field K over a ground field k. Our result generalizes the proof of this result, with the additional assumption that the residue field of the valuation ring is separable over k, by Hagen Knaf and Franz-Viktor Kuhlmann. The proof in this paper uses different methods, being inspired by the approach of Zariski and Abhyankar. Comment: 28 pages. Final Final version |
Databáze: | OpenAIRE |
Externí odkaz: |