Modeling of indoor air treatment using an innovative photocatalytic luminous textile: Reactor compactness and mass transfer enhancement
Autor: | Aymen Amin Assadi, Brahim Bessais, Mabrouk Abidi, Sami Rtimi, Lina Lamaa, Laure Peruchon, A. Hajjaji, Dominique Wolbert, Cédric Brochier, Abdelkrim Bouzaza |
---|---|
Přispěvatelé: | Institut des Sciences Chimiques de Rennes (ISCR), Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Tunis El Manar (UTM), Institut Supérieur des Sciences et Technologies de l'Environnement de Borj Cédria - ISSTE (TUNISIA), Brochier Technologies, Ecole Polytechnique Fédérale de Lausanne (EPFL), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
Pollution
General Chemical Engineering media_common.quotation_subject Mixing (process engineering) Context (language use) 02 engineering and technology 010402 general chemistry 01 natural sciences Industrial and Manufacturing Engineering Indoor air quality Kinetic modelling Mass transfer Luminous textiles Environmental Chemistry [CHIM]Chemical Sciences Process engineering media_common Pollutant business.industry Humidity General Chemistry 021001 nanoscience & nanotechnology 0104 chemical sciences 13. Climate action Indoor air treatment Photocatalysis Environmental science 0210 nano-technology business Photocatalytic reactor |
Zdroj: | Chemical Engineering Journal Chemical Engineering Journal, Elsevier, 2022, 430, pp.132636. ⟨10.1016/j.cej.2021.132636⟩ Chemical Engineering Journal, 2022, 430, pp.132636. ⟨10.1016/j.cej.2021.132636⟩ |
ISSN: | 1385-8947 |
DOI: | 10.1016/j.cej.2021.132636⟩ |
Popis: | International audience; Indoor air pollution is a complex problem that involves a wide range and diversity of pollutants that threaten human health. In this context, significant efforts must be made to improve the quality of indoor air. It is therefore important to start controlling the sources of indoor pollution. However, where eliminating or minimizing sources of emissions is not technically feasible, technologies to reduce them should be used. The present work deals with the photocatalytic depollution of hospitals indoor air, using a continuous photocatalytic process. In order to get closer to real conditions, two model pollutants representing the indoor air of hospitals were chosen as targets; chloroform (CHCl3) and glutaraldehyde (C5H8O2). The photocatalytic oxidation of VOCs alone and their mixture (binary mixing system) has been studied on a pilot scale. Indeed, the experiments were carried out in a continuous planar reactor using a new technology based on the TiO2/optical fiber photocatalyst. The effects of experimental conditions such as air flow rate (4–12 m3.h−1), VOCs inlet concentration (4–40 mg.m−3) and humidity levels (5–90%) were pointed out. The photocatalytic effect of the OF-TiO2 composite was found to be improved under UV irradiation as compared to TiO2. The presence of water molecules in small amounts (less than RH = 30%) can promote the degradation process due to the formation of •OH radicals. Biomolecular Langmuir-Hinshelwood model including mass transfer step has been developed to represent the process behavior. Reusability test show that the optical fiber -based photocatalysts presented good photocatalytic activities towards CHCl3/C5H8O2 removal. © 2021 Elsevier B.V. |
Databáze: | OpenAIRE |
Externí odkaz: |