Soil Chemistry after Irrigation with Treated Wastewater in Semiarid Climate
Autor: | Roberta Alessandra Bruschi Gonçalves, Pedro Carlos Pacheco de Oliveira, Carolina Fonseca Couto, Thomas Vincent Gloaguen, Dionei Lima Santos |
---|---|
Rok vydání: | 2016 |
Předmět: |
Irrigation
Soil salinity soil sodification Soil Science Soil chemistry 04 agricultural and veterinary sciences Drip irrigation 010501 environmental sciences lcsh:S1-972 01 natural sciences Leaching model salinity Wastewater Agronomy Soil water 040103 agronomy & agriculture Sodium adsorption ratio 0401 agriculture forestry and fisheries Environmental science lcsh:Agriculture (General) Agronomy and Crop Science gypsum application 0105 earth and related environmental sciences |
Zdroj: | Revista Brasileira de Ciência do Solo v.40 2016 Revista Brasileira de Ciência do Solo Sociedade Brasileira de Ciência do Solo (SBCS) instacron:SBCS Revista Brasileira de Ciência do Solo, Vol 40, Iss 0 (2016) Revista Brasileira de Ciência do Solo, Volume: 40, Article number: e0140664, Published: 31 MAY 2016 |
ISSN: | 0100-0683 |
DOI: | 10.1590/18069657rbcs20140664 |
Popis: | Soil irrigation using treated wastewater in the Brazilian semiarid region is a promising practice as this area currently faces water scarcity and pollution of water resources by domestic sewage. The aim of this study was to evaluate the use of treated wastewater in drip irrigation and its effect on the chemistry of soil cultivated with squash (Cucurbita maxima Duch.) Coroa IAC and to verify whether there was an increase in soil salinity under a semiarid climate. The experiment was conducted for 123 days on a farm close to the sewage treatment plant, in a randomized block design with five treatments and four replications. The treatments consisted of two irrigation water depths (100 and 150 % of the evapotranspiration), two applications of gypsum to attenuate wastewater sodicity (0 and 5.51 g per plant), and a control treatment with no application of wastewater or gypsum. During the experiment, treated wastewater and soil gravitational water, at a depth of 0.40 m, were collected for measurement of Na+, K+, Ca2+, Mg2+, NO−3, NH4+, Cl− , alkalinity, electrical conductivity, pH and sodium adsorption ratio. At the end of the experiment, soil samples were collected at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m; and pH, total N, organic C, exchangeable cations and electrical conductivity of the saturation extract (CEs) were analyzed. Besides an increase in pH and a reduction in total N, the irrigation with wastewater reduces soil salinity of the naturally salt-rich soils of the semiarid climate. It also led to soil sodification, in spite of the added gypsum, which indicates that irrigation with wastewater might require the addition of greater quantities of gypsum to prevent physical degradation of the soil. |
Databáze: | OpenAIRE |
Externí odkaz: |