On the Hamiltonian structure of large deviations in stochastic hybrid systems

Autor: Paul C. Bressloff, Olivier Faugeras
Přispěvatelé: Department of Mathematics - University of Utah, University of Utah, TO Simulate and CAlibrate stochastic models (TOSCA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Mathématiques pour les Neurosciences (MATHNEURO), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), European Project: 269921,EC:FP7:ICT,FP7-ICT-2009-6,BRAINSCALES(2011), European Project: 318723,EC:FP7:ICT,FP7-ICT-2011-8,MATHEMACS(2012), European Project: 227747,EC:FP7:ERC,ERC-2008-AdG,NERVI(2009), Paul Bressloff holds an INRIA International Chair
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Statistics and Probability
Molecular Networks (q-bio.MN)
[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
01 natural sciences
large deviations
010305 fluids & plasmas
symbols.namesake
0103 physical sciences
FOS: Mathematics
Ergodic theory
Applied mathematics
Quantitative Biology - Molecular Networks
010306 general physics
Eigenvalues and eigenvectors
Mathematics
WKB
Markov chain
[SCCO.NEUR]Cognitive science/Neuroscience
Probability (math.PR)
Statistical and Nonlinear Physics
[SDV.BBM.MN]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Molecular Networks [q-bio.MN]

Hamiltonian
[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]
FOS: Biological sciences
Quantitative Biology - Neurons and Cognition
Hybrid system
symbols
Piecewise
Neurons and Cognition (q-bio.NC)
Large deviations theory
Statistics
Probability and Uncertainty

Hamiltonian (quantum mechanics)
Rate function
Mathematics - Probability
stochastic hybrid systems
Zdroj: Journal of Statistical Mechanics: Theory and Experiment
Journal of Statistical Mechanics: Theory and Experiment, IOP Publishing, 2017, 2017, pp.33206. ⟨10.1088/1742-5468/aa64f3⟩
Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, pp.33206. ⟨10.1088/1742-5468/aa64f3⟩
ISSN: 1742-5468
Popis: International audience; We present a new derivation of the classical action underlying a large deviation principle (LDP) for a stochastic hybrid system, which couples a piecewise deterministic dynamical system in R d with a time-homogeneous Markov chain on some discrete space Γ. We assume that the Markov chain on Γ is ergodic, and that the discrete dynamics is much faster than the piecewise deterministic dynamics (separation of timescales). Using the Perron-Frobenius theorem and the calculus-of-variations, we show that the resulting action Hamiltonian is given by the Perron eigenvalue of a |Γ|-dimensional linear equation. The corresponding linear operator depends on the transition rates of the Markov chain and the nonlinear functions of the piecewise deterministic system. We compare the Hamiltonian to one derived using WKB methods, and show that the latter is a reduction of the former. We also indicate how the analysis can be extended to a multi-scale stochastic process, in which the continuous dynamics is described by a piecewise stochastic differential equations (SDE). Finally, we illustrate the theory by considering applications to conductance-based models of membrane voltage fluctuations in the presence of stochastic ion channels.
Databáze: OpenAIRE