Existence and non-existence of minimal graphic and p-harmonic functions

Autor: Jean-Baptiste Casteras, Esko Heinonen, Ilkka Holopainen
Přispěvatelé: Department of Mathematics and Statistics, Geometric Analysis and Partial Differential Equations, Département de mathématiques Université Libre de Bruxelles, Université libre de Bruxelles (ULB), Méthodes quantitatives pour les modèles aléatoires de la physique (MEPHYSTO-POST), Inria Lille - Nord Europe, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Department of Mathematics and Statistics [Helsinki], Falculty of Science [Helsinki], University of Helsinki-University of Helsinki, Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki, Casteras, Jean-Baptiste
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold $M$ with only one end if $M$ has asymptotically non-negative sectional curvature. On the other hand, we prove the existence of bounded non-constant minimal graphic and $p$-harmonic functions on rotationally symmetric Cartan-Hadamard manifolds under optimal assumptions on the sectional curvatures.
The authors are grateful to Professor Luciano Mari who pointed out an error in the proof of the previous version of Proposition 3.1 To appear in Proc. Roy. Soc. Edinburgh Sect. A
Databáze: OpenAIRE