Chamber identity programs drive early functional partitioning of the heart

Autor: Yi Zhou, C. Geoffrey Burns, Alexa Burger, M. Khaled Sabeh, Daniela Panáková, Gabriel Musso, Christian Mosimann, Leonard I. Zon, Caroline E. Burns, Logan A. Carr, Alan J. Davidson, Kathleen R. Nevis, Calum A. MacRae, Katy L. Lawson, Anthony DiBiase, Andreas A. Werdich
Přispěvatelé: University of Zurich, Zon, Leonard I
Rok vydání: 2015
Předmět:
Mesoderm
Embryo
Nonmammalian

Myosin Light Chains
Heart Ventricles
General Physics and Astronomy
1600 General Chemistry
Biology
Article
General Biochemistry
Genetics and Molecular Biology

Animals
Genetically Modified

1300 General Biochemistry
Genetics and Molecular Biology

medicine
Animals
Myocyte
Myocytes
Cardiac

Heart Atria
Regulatory Elements
Transcriptional

Salivary Proteins and Peptides
Zebrafish
Regulation of gene expression
Multidisciplinary
PITX2
Heart development
Myocardium
Lateral plate mesoderm
Gene Expression Regulation
Developmental

Heart
General Chemistry
Anatomy
LIM Domain Proteins
Zebrafish Proteins
Cadherins
biology.organism_classification
10124 Institute of Molecular Life Sciences
3100 General Physics and Astronomy
medicine.anatomical_structure
Latent TGF-beta Binding Proteins
Ventricle
570 Life sciences
biology
T-Box Domain Proteins
Neuroscience
Transcription Factors
Zdroj: Nature Communications
Nature communications
ISSN: 2041-1723
DOI: 10.1038/ncomms9146
Popis: The vertebrate heart muscle (myocardium) develops from the first heart field (FHF) and expands by adding second heart field (SHF) cells. While both lineages exist already in teleosts, the primordial contributions of FHF and SHF to heart structure and function remain incompletely understood. Here we delineate the functional contribution of the FHF and SHF to the zebrafish heart using the cis-regulatory elements of the draculin (drl) gene. The drl reporters initially delineate the lateral plate mesoderm, including heart progenitors. Subsequent myocardial drl reporter expression restricts to FHF descendants. We harnessed this unique feature to uncover that loss of tbx5a and pitx2 affect relative FHF versus SHF contributions to the heart. High-resolution physiology reveals distinctive electrical properties of each heart field territory that define a functional boundary within the single zebrafish ventricle. Our data establish that the transcriptional program driving cardiac septation regulates physiologic ventricle partitioning, which successively provides mechanical advantages of sequential contraction.
The heart forms from combining the first with the second heart field, which in mammals creates left and right ventricle. Here transgenic zebrafish and physiology studies reveal that transcription factors controlling septation in mammals already in teleosts guide muscle coupling by controlling the relative contribution of the two fields to the heart.
Databáze: OpenAIRE