Convexity theorems for the gradient map on probability measures
Autor: | Alberto Raffero, Leonardo Biliotti |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics Gradient map 53D20 Kähler manifold Space (mathematics) 01 natural sciences Convexity Gradient map Probability measures Convexity 0103 physical sciences FOS: Mathematics QA1-939 0101 mathematics Abelian group Mathematics::Symplectic Geometry Probability measure Mathematics 010102 general mathematics Probability measures Lie group Submanifold Manifold Differential Geometry (math.DG) Mathematics::Differential Geometry 010307 mathematical physics Geometry and Topology |
Zdroj: | Complex Manifolds, Vol 5, Iss 1, Pp 133-145 (2018) |
ISSN: | 2300-7443 |
DOI: | 10.1515/coma-2018-0008 |
Popis: | Given a Kähler manifold (Z, J, ω) and a compact real submanifold M ⊂ Z, we study the properties of the gradient map associated with the action of a noncompact real reductive Lie group G on the space of probability measures on M. In particular, we prove convexity results for such map when G is Abelian and we investigate how to extend them to the non-Abelian case. |
Databáze: | OpenAIRE |
Externí odkaz: |