Magnetite (Fe3O4) nanoparticles as adsorbents for As and Cu removal

Autor: Régis Guégan, Simona Liliana Iconaru, Mikael Motelica-Heino, Carmen Steluta Ciobanu, Daniela Predoi, Cristina Liana Popa
Přispěvatelé: National Institute of Materials Physics, National Institute of materials Physics, Institut des Sciences de la Terre d'Orléans - UMR7327 (ISTO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM), Biogéosystèmes Continentaux - UMR7327, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Bureau de Recherches Géologiques et Minières (BRGM) (BRGM)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), PICS/2014 Project' Nanoengineered particles for contaminated sites remediation (NANOREMEDIATION)'.
Rok vydání: 2016
Předmět:
Zdroj: Applied Clay Science
Applied Clay Science, Elsevier, 2016, 134, pp.128-135. ⟨10.1016/j.clay.2016.08.019⟩
ISSN: 0169-1317
DOI: 10.1016/j.clay.2016.08.019
Popis: International audience; The aim of this study was to develop synthetic magnetite nanoparticles (nFe3O4) with preferential reactivity for trace elements (TE) for possible environmental applications as adsorbents. The synthetic magnetite materials obtained through the co-precipitation of both Fe 3+ and Fe 2+ ions (Fe 2+ / Fe 3+ = 0.5) were characterized by a set of complementary techniques such as X-ray diffraction, transmission and scanning electron microscopy, Fourier transform infrared and Raman spectroscopy, and BET adsorption method. The resulting nFe3O4 displayed a wide specific surface area (100 m 2 g-1) with particles reaching a size of about 10 nm, smaller than those of the well-crystallized commercial ones (cFe3O4) estimated at 80 nm while showing a BET surface area of 6.8 m² g-1. The adsorption properties of the synthetic nFe304 magnetite nanoparticles were characterized and compared to commercial analogues with the adsorption of both arsenic and copper. The equilibrium adsorption isotherms were properly fitted with Langmuir and Freundlich equation models. The maximum adsorption capacity for the solid phase, qm, obtained for the adsorption of arsenic onto nFe3O4 had an increase of 69.46% comparative to the value obtained for the adsorption of arsenic on cFe3O4. The results suggested that the iron oxide nanoparticles
Databáze: OpenAIRE