On the Zeta function and the automorphism group of the generalized Suzuki curve

Autor: Mariana Coutinho, Herivelto Borges
Rok vydání: 2021
Předmět:
Zdroj: Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
ISSN: 1088-6850
0002-9947
Popis: For p p an odd prime number, q 0 = p t q_{0}=p^{t} , and q = p 2 t − 1 q=p^{2t-1} , let X G S \mathcal {X}_{\mathcal {G}_{\mathcal {S}}} be the nonsingular model of Y q − Y = X q 0 ( X q − X ) . \begin{equation*} Y^{q}-Y=X^{q_{0}}(X^{q}-X). \end{equation*} In the present work, the number of F q n \mathbb {F}_{q^{n}} -rational points and the full automorphism group of X G S \mathcal {X}_{\mathcal {G}_{\mathcal {S}}} are determined. In addition, the L-polynomial of this curve is provided, and the number of F q n \mathbb {F}_{q^{n}} -rational points on the Jacobian J X G S J_{\mathcal {X}_{\mathcal {G}_{\mathcal {S}}}} is used to construct étale covers of X G S \mathcal {X}_{\mathcal {G}_{\mathcal {S}}} , some with many rational points.
Databáze: OpenAIRE