Acoustic Field Characterization of Medical Array Transducers Based on Unfocused Transmits and Single-Plane Hydrophone Measurements
Autor: | Marhenke, Torben, Sanabria, Sergio J., Chintada, Bhaskara R., Furrer, Roman, Neuenschwander, Jürg, Goksel, Orcun |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
ultrasound
acoustic holography hydrophone measurements Rayleigh–Sommerfeld medical transducers Near field Safety index Plane wave Elastography elastography Transducers Dewey Decimal Classification::600 | Technik::620 | Ingenieurwissenschaften und Maschinenbau near field plane wave Hydrophones Acoustic fields lcsh:Chemical technology Article Ultrasound Ultrasonics Rayleigh lcsh:TP1-1185 Application programs Rayleigh-Sommerfeld Acoustic holography Ultrasonic applications Medical transducers Hydrophone measurements Near fields safety index Single crystals Medical imaging ddc:620 |
Zdroj: | Sensors, 19 (4) Sensors (Basel, Switzerland) Sensors, Vol 19, Iss 4, p 863 (2019) Sensors Volume 19 Issue 4 Sensors 19 (2019), Nr. 4 |
Popis: | Medical ultrasonic arrays are typically characterized in controlled water baths using measurements by a hydrophone, which can be translated with a positioning stage. Characterization of 3D acoustic fields conventionally requires measurements at each spatial location, which is tedious and time-consuming, and may be prohibitive given limitations of experimental setup (e.g., the bath and stage) and measurement equipment (i.e., the hydrophone). Moreover, with the development of new ultrasound sequences and modalities, multiple measurements are often required to characterize each imaging mode to ensure performance and clinical safety. Acoustic holography allows efficient characterization of source transducer fields based on single plane measurements. In this work, we explore the applicability of a re-radiation method based on the Rayleigh&ndash Sommerfeld integral to medical imaging array characterization. We show that source fields can be reconstructed at single crystal level at wavelength resolution, based on far-field measurements. This is herein presented for three practical application scenarios: for identifying faulty transducer elements for characterizing acoustic safety parameters in focused ultrasound sequences from 2D planar measurements and for estimating arbitrary focused fields based on calibration from an unfocused sound field and software beamforming. The results experimentally show that the acquired pressure fields closely match those estimated using our technique. |
Databáze: | OpenAIRE |
Externí odkaz: |