Elliptic classes of Schubert varieties
Autor: | Shrawan Kumar, Richárd Rimányi, Andrzej Weber |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Pure mathematics
Recursion General Mathematics Flag (linear algebra) 010102 general mathematics Schubert calculus 14N15 55N34 58J26 01 natural sciences Set (abstract data type) Mathematics - Algebraic Geometry Mathematics::Algebraic Geometry Homogeneous Simple (abstract algebra) Mathematics::Quantum Algebra 0103 physical sciences FOS: Mathematics 010307 mathematical physics 0101 mathematics Algebraic Geometry (math.AG) Mathematics |
Popis: | We introduce new notions in elliptic Schubert calculus: the (twisted) Borisov-Libgober classes of Schubert varieties in general homogeneous spaces G/P. While these classes do not depend on any choice, they depend on a set of new variables. For the definition of our classes we calculate multiplicities of some divisors in Schubert varieties, which were only known for full flag varieties before. Our approach leads to a simple recursions for the elliptic classes. Comparing this recursion with R-matrix recursions of the so-called elliptic weight functions of Rimanyi-Tarasov-Varchenko we prove that weight functions represent elliptic classes of Schubert varieties. 23 pages |
Databáze: | OpenAIRE |
Externí odkaz: |